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Abstract
For the treatment of interacting electrons in crystal lattices, approximations based on the picture
of effective sites, coupled in a self-consistent fashion, have proven very useful. Particularly in
the presence of strong local correlations, a local approach to the problem, combining a powerful
method for the short-ranged interactions with the lattice propagation part of the dynamics,
determines the quality of results to a large extent. For a considerable time the noncrossing
approximation (NCA) in direct perturbation theory, an approach originally developed by Keiter
for the Anderson impurity model, was a standard for the description of the local dynamics of
interacting electrons. In the last couple of years exact methods like the numerical
renormalization group (NRG), as pioneered by Wilson, have surpassed this approximation as
regarding the description of the low-energy regime. We present an improved approximation
level of direct perturbation theory for finite Coulomb repulsion U , the crossing approximation 1
(CA1), and discuss its connections with other generalizations of NCA. CA1 incorporates all
processes up to fourth order in the hybridization strength V in a self-consistent skeleton
expansion, retaining the full energy dependence of the vertex functions. We reconstruct the
local approach to the lattice problem from the point of view of cumulant perturbation theory in
a very general way and discuss the proper use of impurity solvers for this purpose. Their
reliability can be tested in applications to, for example, the Hubbard model and the
Anderson-lattice model. We point out shortcomings of existing impurity solvers and
improvements gained with CA1 in this context.

This paper is dedicated to the memory of Hellmut Keiter.

1. Introduction

In a key paper [1], Keiter and Kimball in 1971 described
a new perturbational method for treating the problem of
an impurity with strong local Coulomb matrix elements,
embedded in a metallic host. Their guideline was to preserve
the local correlations from the outset, contrary to Hartree–
Fock theory or to other decoupling schemes, and to keep the
interpretation of individual contributions as physical processes.
The particular difficulties to be surmounted arose from the

fact that choosing hybridization or intersite transfer of single
particles as the perturbation leaves an interacting local shell as
the unperturbed part of the Hamiltonian. In such a case the
well-known machinery of Feynman diagrammatics cannot be
used, including Wick’s theorem and linked cluster expansions.
The solution found used time-ordered pieces of Feynman
processes, visualized as Goldstone diagrams, and organizing
them in the form of Brillouin–Wigner perturbation theory
with real energy variables. In this early formulation of the
theory the need to regularize vanishing energy denominators
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prevented extensive studies to infinite perturbational orders,
which are necessary in the presence of infrared divergencies,
encountered, for example, in the Kondo problem. These can be
thought of as to arise from degeneracies in a classical part of
the Hamiltonian; they are then lifted by quantum fluctuations.
Early applications of the technique can be found in [2], where
leading logarithmically divergent terms are summed to all
orders to generate finite results, and in [3, 4], where also
generalizations of the formalism to more general local shell
structures and to the genuine lattice problem were discussed.

The technique of Keiter and Kimball originally was
designed in connection with the Kondo problem. A revival
occurred around 1980, when metallic compounds exhibiting
the intermediate valence phenomenon stayed in the focus
of experimentalists [5], and somewhat later, when the
existence of very heavy quasiparticles (heavy fermions) was
revealed in such compounds containing ions with active
4f or 5f shells [6]. In particular the discovery of heavy
fermion superconductors [7] spurred the investigation of lattice
models with strong local correlations. A breakthrough in
theory occurred in 1983, when it was learnt how to handle
direct perturbation theory completely in the complex plane,
thus circumventing the regularization problem. The first
independent extensive studies [8, 9] of impurity problems
were based on the leading skeleton diagram contributions
to the dynamics of ionic shell states, requiring the solution
of self-consistently coupled singular integral equations. The
contributing diagrams are completely characterized as not
containing crossing band electron lines. This approximation
(NCA) was shown to adequately describe dynamical properties
like excitation spectra in addition to thermodynamic quantities,
the latter of which being known from Wilson’s implementation
of the numerical renormalization group [10]. NCA allows
us to study [8] the temperature-dependent formation of the
Abrikosov–Suhl resonance (ASR) [11] with an assessment
of the systematic shortcomings via a comparison with the
resonant level model, the limit of vanishing spin degeneracy.
NCA can also be characterized as a conserving approximation
in the sense of Baym and Kadanoff [12] and can consistently
be applied to calculate various properties of the strongly
correlated impurity problem [9]. Also in 1983, a reformulation
of perturbation theory was presented [13], which allowed for
the use of Feynman diagrammatics via the introduction of
auxiliary particles (slave bosons). Correlated local states are
reintroduced in this approach by a constraint on the larger
Hilbert space and a corresponding projection onto the physical
sector after resummations. The slave-boson method stands
in one-to-one correspondence to the formulation via direct
perturbation theory and thus contributes to the same line of
development.

Merits and shortcomings of the NCA for the Anderson
impurity with infinite local Coulomb repulsion, meanwhile, are
well known, for example as a result of the early numerical
studies [8, 14] or of the exact analysis of the case with
a flat electron–hole symmetric conduction band at zero
temperature [15]. NCA, for example, captures the exponential
part of the Kondo temperature TK, the dynamically generated
energy scale below which a local Fermi liquid is formed due

to spin compensation, but not the prefactor. It does not furnish
the correct values of the threshold exponents, connected with
the time development of ionic states as known from the x-
ray absorption problem [16, 17]. Its accuracy increases with
increasing (orbital) degeneracy of the ionic level, and NCA
may even become a fully acceptable approximation for a multi-
channel situation [18].

The need for improved treatments of the impurity problem
with correlated electrons, however, turned out to be even more
important, when it became a building block in theories of
lattice systems [19–21], using the concept of effective sites.
It turned out that, for example, the coherence forming in
the low temperature regime of lattices can only be correctly
retrieved by a proper incorporation of the effective local Fermi
liquid. The necessary increase in the quality of results for
lattice models was largely driven by the use of numerically
exact methods as impurity solvers, i.e. quantum Monte Carlo
(QMC) and numerical renormalization group (NRG) [22].
NRG in particular, in its extension of the original static
version to dynamical quantities [23], has been developed as a
useful and convenient tool for a description of the low-energy
region [24]. When combined with the (cluster-) dynamical
mean field theory (DMFT) it opens the perspective for a proper
description of ground states and correlations in the lattice.

Still there remain problems: (1) nonlocal matrix elements
of the Coulomb interaction can be strong, too, and may enforce
a nonlocal approach with links between sites from the outset,
such as, for example, in pyrochlore lattices, where for certain
fillings classical ground states characterized by the tetrahedron
rule build the arena for quantum fluctuations [25]. (2) The
use of clusters as larger local building blocks in a lattice
theory greatly enlarges the local space to be diagonalized in
the beginning [26, 27] and enforces a restricted choice of states
and/or the use of simpler impurity solvers like, for example,
a simplified finite U-version of NCA (SNCA), especially if a
self-consistent determination of one-particle states and matrix
elements is aimed at as part of the solution of a lattice
problem [28]. (3) The numerical methods mentioned do not
work equally well in different energy regimes.

NRG, for example, often leads to a poor description at
high excitation energies. Depending on tunable parameters
in lattice models corresponding to temperature, pressure,
chemical composition, doping, etc, a wealth of phases and
corresponding transitions is found; even a transmutation of
underlying pictures or concepts may occur, as, for example,
from magnetism of (nearly) stable local magnetic moments
coupled via short-ranged exchange interactions to itinerant
forms of magnetism to be described by an effective Stoner
theory for bands of itinerant quasiparticles [21, 29]. In
these cases a good description of a large regime of excitation
energies is desired, which requires impurity solvers, which
work equally well in a broad range of energies and allows for
a controlled approach to known limiting cases. Facing these
difficulties for a more complete understanding and description
of lattice systems, further developments of methods with an
analytical background seem necessary.

In this paper we will present a version of direct
perturbation theory for an (effective) impurity, which combines
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elements of some existing improvements of NCA and goes
beyond them in some respects. An essential ingredient of
this new stage of approximation are processes with crossing
band electron lines, as depicted along a (imaginary) time axis,
and hence the name ‘crossing approximation 1’ (CA1). In
the following section 2 we will give a very short account of
direct perturbation theory, describe CA1 and comment on its
relation to NCA and its extensions as accounted for in the
literature so far. Section 3 contains some calculated spectra for
the Anderson impurity model and a comparison with former
approximations and, most important, to results obtained with
the NRG. As will become apparent, CA1 turns out to be a
rather good impurity solver in the whole range of energies and
can be applied to calculate excitation spectra, ionic propagators
and susceptibilities. A conceptual bridge between impurity
and lattice theories is outlined in section 4, which allows us
to recover the results of lattice theories like XNCA [20] and
DMFT [22, 30] in a general fashion.

As an example for the usefulness of CA1 in this context
a calculation for the Anderson lattice is presented. The
concluding section 5 contains remarks about an application
of direct perturbation theory to susceptibilities and magnetic
phases of lattice models and about improvements regarding
nonlocal correlations as well as a new impurity solver, i.e. a
CA2 project.

2. Description of CA1

2.1. Introductory remarks on direct perturbation theory

A typical set-up for the application of direct perturbation
theory uses a Hamiltonian H = H0� + H0c + V with
the following parts: H0� ≡ H0�({ fmσ , f †

mσ }) contains
the dynamics of interacting electrons in local one-particle
states with quantum numbers m and σ (pseudospin) and is
expressed via corresponding annihilation (creation) operators
f (†)
mσ . H0c ≡ H0c({ckσ , c†

kσ }) describes a reservoir of
noninteracting electrons in Bloch states (a band index is
suppressed here), and V = V ({ fmσ , f †

mσ , ckσ , c†
kσ }) is a

hybridization or transfer between local and band states, which
is likewise expressed via elementary one-particle processes.
H0� acts on a local Fock space of finite dimension, typically
one or a few valence shells or orbitals, and can in principle be
diagonalized. A basis of eigenstates |n0, M〉 (‘ionic states’)
is denominated by a local particle number n0 and a set of
many-body quantum numbers M specifying angular momenta
or crystal field levels. With the operators Xn′

0 M ′,n0 M ≡
|n′

0 M ′〉〈n0 M| and corresponding n0-particle energies En0 M the
local Hamiltonian is

H0� =
∑

n0,M

En0 M Xn0 M,n0 M , (1)

where only projectors onto the eigenstates appear. The terms
‘local’ or ‘ionic’ do not necessarily imply one single atom.
The formalism equally well applies to local subsystems of
molecular type or to local clusters. A transcription of V to
local many-body states involves via

f (†)
mσ =

∑

n0

∑

M,M ′
α(∗)

mσ (n0 − 1M ′, n0 M)X (†)
n0−1M ′,n0 M (2)

the set of ionic transfer operators Xn′
0 M ′,n0 M with n′

0 = n0 ± 1.
Using V as the perturbation, processes of direct perturbation
theory are constructed from elementary absorption or emission
events of band electrons from a local shell state at fixed
(imaginary) times with amplitudes given by the coefficients
αmσ (n′

0 M ′, n0 M) in (2) [3]. Insofar it can be expected that,
for example, the partition function can be cast into a form
where the contribution of each particular ionic state becomes
apparent:

Z = Tr e−βH =
∮

C

dz

2π i
e−βz Tr�Trc(z − H )−1

= Z0c

∑

n0,M

∮

C

dz

2π i
e−βz Pn0 M (z)

= Z0c

∑

n0,M

∫
dω e−βω�n0 M (ω), (3)

where the contour C encircles all singularities of the integrand
in a counterclockwise fashion. Z0c = Trc e−βH0c is the
partition function for the band part alone and �nM0(ω) =
− 1

π
Im Pn0 M(ω + iδ) is the spectral intensity of the ionic

state |n0 M〉, which evolves with the propagator Pn0 M(z).
A straightforward concept of irreducibility with respect
to intermediate ionic states allows for the introduction of
irreducible ionic self-energies, with analytical properties as
usual:

Pn0 M(z) = (
z − En0 M − 
n0 M(z)

)−1
, (4)

and a corresponding perturbation expansion. The processes
contributing to these self-energies 
n0 M(z) will be constructed
from skeleton diagrams in the following, so that the ionic
propagators Pn0 M (z) are to be determined self-consistently
from a set of coupled integral equations.

Representations for general Green functions, which in
correspondence with the partition function (3) are expressed
as convolutions of ionic propagators, can also be derived along
the lines sketched above. We consider in particular the local
one-particle Green function:

Fmσ (τ ) = −〈T ( fmσ (τ ) f †
mσ )〉

= −
∑

n0 ,̃n0

∑

M1,M ′
1

∑

M2,M ′
2

αmσ (n0 − 1M ′
1, n0 M1)

× α∗
mσ (̃n0−1M ′

2, ñ0 M2)

× 〈T (Xn0−1M ′
1,n0 M1(τ )Xñ0 M2 ,̃n0−1M ′

2
)〉, (5)

the Fourier coefficients of which at Matsubara frequencies
ωn = (2n+1)π

β
(n ∈ Z) give, after analytical continuation

iωn → ω + iδ to the upper border of the real frequency
axis, the local one-particle excitation spectrum �mσ (ω) =
− 1

π
ImFmσ (ω + iδ). The complete set-up of nonstandard

direct perturbation theory is well documented, including the
diagrammatic rules for the processes to be discussed in the
following [3, 8, 31].

2.2. General features of crossing and noncrossing
approximations for the SIAM

The first comprehensive studies of direct perturbation theory
for the Anderson impurity model (SIAM):
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Ĥ =
∑

σ

(
ε� f̂ †

σ f̂σ + U

2
n̂ f

σ n̂ f
σ̄

)
+

∑

k,σ

εk ĉ†
kσ ĉkσ

+ 1√
N

∑

k,σ

(
Vk ĉ†

kσ f̂σ + h.c.
)

(6)

concentrated on the limit U = ∞ of infinite local Coulomb
repulsion and were termed NCA [8, 9, 32]. They were
based on the leading skeletons of order V 2 to the ionic self-
energies 
0(z) and 
1σ (z) and furnished a qualitatively correct
picture, e.g. for the temperature-dependent formation of the
Abrikosov–Suhl resonance (ASR), the most prominent many-
body signature of the Kondo effect [33] in the local one-particle
spectrum of the model. The particular aspect of degeneracy ν

of the local level, i.e. ν = 2 for the two possible z components
of spin in the original SIAM but higher ν as in Ce compounds
with ν = 6 becoming possible through orbital degeneracy,
drew much attention: in the limit ν → ∞, using a proper
scaling V → V√

ν
, the NCA results become increasingly

valid [2, 13, 34], and for ν → 1, on the other hand, a trivially
solvable resonant level model emerges. Whereas the limit of
large ν gave reason for classification schemes of diagrams in
orders of 1

ν
, the limit ν = 1 aroused hopes of reconstructing an

exact solution of a simple model by direct perturbation theory,
thus completely clarifying the systematics of diagrams for all
cases of ν.

This hope was not fulfilled up to now, although Keiter
presented an exact solution of SIAM for the zero-bandwidth
limit unravelling the full diagrammatics for this simpler
case [35]. It became clear then that progress with the direct
perturbation approach had to be worked out stepwise by
including more important classes of skeleton diagrams into the
calculations.

In the following we discuss the systematics of these
approximations for the SIAM by concentrating on the vertices,
which allows for writing down several quantities in a compact
and rigorous form, i.e. the ionic self-energies


0(z) =
∑

σ

∫
dx Dσ (x) f (x)�0,1σ (z, x)P1σ (z + x),


1σ (z) =
∫

dx f (x)
[
Dσ (−x)�0,1σ (z + x,−x)P0(z + x)

+ D−σ (x)�2,1σ (z + x,−x)P2(z + x)
]
,


2(z) =
∑

σ

∫
dx D−σ (−x) f (x)�2,1σ (z, x)P1σ (z + x),

(7)

and the local one-particle Green function (5), which in the
special case of the SIAM contains only two contributions:

Fσ (z) = 1

Z�

∮

C

dz′

2π i
e−βz′[

�0,1σ (z ′, z)P0(z
′)P1σ (z + z ′)

+ �2,1−σ (z ′,−z)P2(z
′)P1−σ (z − z ′)

]
. (8)

Here we have introduced the hybridization intensity
Dσ (ε) = V (ε)2

N

∑
k δ(ε − εkσ ) = V (ε)2�0c(ε) and the

(perturbed) local partition function Z� = Z
Z0c

. Expressions
for higher Green functions take an analogous form; we only

Figure 1. Diagrammatic representation of ionic self-energies, local
one-particle Green function and magnetic susceptibility for a
single-impurity Anderson model (SIAM) in direct perturbation
theory. Physical processes are arranged vertically along an imaginary
time axis (broken line) which bears an energy variable z after
Laplace transformation. The presence of an electron in the local shell
is indicated via a wiggly line on this time axis. Excitations of band
electrons (straight lines) take place at hybridization vertices (dots on
the time axis). Due to time-rotational invariance all vertex
corrections in these diagrams can be collected at one of the vertices,
which is drawn as a triangle.

add here a formula for the dynamical magnetic susceptibility
(leaving out prefactors ( 1

2 gμβ)2):

χmag(z) = − 1

Z�

∮

C

dz′

2π i
e−βz′

×
∑

σ

�σ,σ (z ′, z)P1σ (z ′)P1σ (z + z′), (9)

which involves a separate kind of vertex �σ,σ . Equations (7)–
(9) are graphically represented in figure 1; observe identities
like �0,1σ (z−z ′, z′) = �1σ,0(z, z′) for setting up the equations
from there.

In the SNCA, which can be viewed as the simplest
nontrivial approximation for all values of U , the vertex
functions are all taken without any vertex corrections:

SNCA : �0,1σ = �2,1σ = �σ,σ ≡ 1 . (10)

The original NCA constitutes the U → ∞ limit hereof
and is obtained by ignoring the doubly occupied state, i.e. by
setting P2 ≡ 0.

The NCA, and as a consequence the SNCA for general
values of U , can only furnish qualitative insight into the
dynamics of the SIAM, since it is plagued by shortcomings.
These are revealed in the following ways: (1) comparison
with the resonant level limit ν → 1 ends in an insufficient
fit to the virtual scattering resonance in the excitation
spectrum, in particular when the intermediate valence regime
is approached [8]. (2) Form and position of the ASR are
not in accord with the Friedel sum rule, most important for
ν = 2, and correspondingly the local self-energy 
̃σ (z) =

σ (z) + i�A = z − ε� + i�A − Fσ (z)−1 does not comply
with local Fermi-liquid properties [36] (�A = πV (0)2�0c(0)

is the Anderson width and ε� = E1σ − E0 the local one-
particle level). (3) Threshold exponents, as taken from the ionic
propagators (see below) with values α0 = 1

3 and α1σ = 2
3 in

the NCA, do not agree with the values known from the x-ray
absorption problem [17]. (4) An exact analytical solution of the

4
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Figure 2. Vertex structure of the ‘full NCA’ (FNCA). The hierarchy
of vertex corrections is generated by two coupled integral equations.
The bare vertices (first terms) are subsequently crossed by one more
band excitation, which ends below and above in a full vertex,
respectively. The diagrams are taken as skeletons, i.e. the local lines
are dressed with the full ionic propagators.

NCA version of equations (7) for zero temperature and a flat
conduction band density of states symmetric around the Fermi
energy reveals spurious features near the ASR [15], namely a
sharp spike showing up at the Fermi level below a (‘pathology’)
temperature Tp, being still lower than TK in the Kondo regime.

Point (3) deserves some further comments, because it hints
at the particular singular structure of the ionic propagators
Pn0 M (z), which causes difficulties in the numerical solution
of the system (7) of integral equations and also in subsequent
procedures like (8) and (9) involving convolutions of several of
the Pn0 M . As explained, for example in [17], these propagators
develop a common threshold at an energy ω = Eg < ε� for
zero temperature, due to a slow algebraic decay Pn0 M(t) ∼
e− i

h̄ Egt/tαM in the time domain, i.e.

Im Pn0 M (ω − iδ) ∼ 1/(ω − Eg)
1−αM ,

α0 = n2
�

ν
, α1σ = 1 − 2

n�

ν
+ n2

�

ν
,

(11)

0 < n� � 1 being the occupation of the local level in the
Kondo regime 0 < �A < −ε� < U . At T = 0, Eg is
the lower endpoint of a branch cut in the functions Pn0 M(z)
along the real axis z = ω > Eg; it is this particular divergent
behaviour—for n� � 1 and ν = 2 one has 1 − α0 � 1

2 and
0 < 1 − α1σ � 1

2 —which needs care and makes numerical
calculations to higher orders much more time-consuming than
NCA or SNCA, due to multiple convolutions of these singular
structures.

2.3. Generalizations of SNCA: PNCA, ENCA and FNCA

The first useful generalization of NCA to the SIAM with
general values of the Coulomb repulsion U was proposed
and investigated in 1989 [37]. It was called ‘full NCA’
(FNCA) and is visualized diagrammatically in figure 2. One
recognizes a particular subsystem of integral equations, which
serves to generate a class of vertex corrections (again as
skeletons) extending to infinite order. This particular choice
was motivated by an attempt to include as many exchange
counterparts as possible to those processes, which already
contribute to the ionic propagators in SNCA, see the appendix
in [37]. As Keiter repeatedly has pointed out [38], the
balance between processes which transform into each other
by a reversal of partial time orderings, as shown in figure 3,

Figure 3. Sequences of two elementary excitation processes, which
together constitute the lowest order exchange coupling vertex
remaining after a Schrieffer–Wolff transformation of SIAM to the
s–d-model.

is necessary to obey the Pauli principle and to comply
with universality in the Kondo limit, where in accord with
the Schrieffer–Wolff transformation from SIAM to the s–d-
exchange model [39] the characteristic energy scale kBTK is
expressed via an effective exchange coupling constant I =
V 2

ε�
− V 2

ε�+U ; figure 3 just visualizes the two contributions to
this I [11, 40].

The system of five integral equations according to
figures 1 and 2 was solved for finite U in [37], and
the results for the ionic propagators and the corresponding
excitation spectra were compared to some simpler calculation
schemes. Whereas pronounced discrepancies from SNCA
showed up, e.g. regarding the important energy scales, the so-
called ‘enhanced NCA’ (ENCA) already captured important
improvements.

In ENCA all vertices on the right-hand side of the two
equations in figure 2 are taken as bare ones. Then, only the
leading contributions to the infinite series of vertex corrections
contained in FNCA are included; among the latter are running
n-particle cascades between the initial and final state during
the excitation by the external electron (iterate the vertex in
the middle of the last diagram) as well as long-time memory
effects between initial and final states through chains of
internal excitations, before or after the external excitation
occurs (iterate the respective vertices on top and at the bottom
of the diagram). Since the ENCA has proven as a good
compromise between accuracy and the calculational effort to
be invested in an impurity solver for lattice problems (see
also section 4), we cite the explicit expressions for the vertex
corrections, which have to be solved together with the system
(7) of self-energy equations:

��
(ENCA)
0,1σ (z, z′) =

∫
dεD−σ (ε) f (ε)

× P1−σ (z + ε)P2(z + z′ + ε),

��
(ENCA)

2,1−σ (z, z′) =
∫

dεD−σ (ε)(1 − f (ε))

× P1σ (z − ε)P0(z − z′ − ε).

(12)

Calculations of the local one-particle spectrum in [37] were
then based on the ENCA and led to an improved many-body
scale and a better understanding of the many-body dynamics
of SIAM, in particular at finite values of U .

Whereas ENCA takes into account the vertex corrections
up to order O(V 2), and FNCA in addition certain classes up to
infinite order, both do not include the fully crossing diagram of
order O(V 4) shown in figure 4(a).

5



J. Phys.: Condens. Matter 20 (2008) 365217 N Grewe et al

Figure 4. Part (a) shows a fully crossing vertex correction of order
O(V 4). The two processes shown in parts (a) and (b) are of the same
order regarding an expansion in the degeneracy ν of the singly
occupied local state. With the self-consistent replacements shown in
part (c) and with fully dressed local lines they constitute the
‘post-NCA’ (PNCA), a theory for U = ∞, in which the doubly
occupied local state is projected out.

This vertex correction is the lowest nonvanishing one in
the U = ∞-theory and was frequently used to discriminate
‘crossing’ and ‘noncrossing’ approximations.

In order to investigate the role of such fully crossing
diagrams the SIAM at infinite U was investigated in 1994 with
help of a ‘post-NCA’(PNCA) [41]. This approximation scheme
was set up along the lines of a 1

ν
expansion and collected all

vertex corrections up to O( 1
ν2 ), i.e. all contributions to the

ionic self-energies up to this order. Therefore, also the vertex
correction shown in figure 4(b) was taken into account, which
has two more powers of V compared with figure 4(a), but due
to

∑ν
σ ′=1 ( V√

ν
)6 = V 6

ν2 is of the same order 1
ν2 thanks to the

closed ring with spin summation over σ ′ between vertices 2, 3,
6 and 7. Actually, and in close analogy to the FNCA, the bare
vertices in figures 4(a) and (b) were all replaced by full ones,
as indicated in figure 4(c), and the coupled system of vertex
corrections (now including all orders) was solved, again self-
consistently together with the system (7) of ionic self-energies.
Convergence could be reached on not too large timescales
by the use of parallel computing. Progress over the original
NCA turned out to be essential: apart from a corrected many-
body scale kBTK, the local Fermi-liquid properties improved
considerably, the position of the ASR near the Fermi level
agreed much better with the one implied by Friedel’s sum
rule, and also the threshold exponents α0 and α1 were shifted
towards the values of (11), although agreement with these
values or with a variant according to [42] was not conclusive.

Due to the considerable numerical effort, regarding the
multiple overlapping integrations over functions with rich
structure, an extension of PNCA to finite values of U seemed
not possible in 1994, since many more diagrams involving the
doubly occupied state would have to be added.

2.4. Other approximation schemes in the literature

Before the new approximations CA1 and a CA2 project
(in section 5) will be explained, we shortly comment on

Figure 5. Vertex corrections summed in the ‘conserving T -matrix
approximation’ (CTMA) for the SIAM at U = ∞ as viewed from
direct perturbation theory. Part (a) T -matrix which, when substituted
into the diagram of figure 4(a), generates the sequence of vertex
corrections shown in part (b).

two approximation schemes, which have been proposed
and investigated over the last ten years. In the so-called
‘symmetrized finite-U NCA’ (SUNCA) special emphasis is
laid on the chains of scattering events [43] mentioned above
in connection with the FNCA [37]. This scheme is conserving
(�-derivable in the sense of Kadanoff and Baym) like all other
approximations mentioned in this section; moreover it can
be characterized as involving just a subclass of the FNCA-
diagrams. Although the relevant papers are written with
help of the slave-boson formalism, the formulation is fully
equivalent to direct perturbation theory as pointed out above.
The evaluation of the local one-particle spectrum is based on a
full infinite subclass of vertex corrections and thus goes beyond
the ENCA calculations. These vertex corrections with long
scattering chains are easily visualized with the help of the
FNCA diagrams of figure 2: iterate the vertex equations with
respect to the upmost vertex only. The results underline the
progress reached with ENCA and FNCA [37].

Whereas SUNCA is applicable to the finite-U case and
can be placed into a scheme of repeated vertex corrections with
single line crossings (a more general version being FNCA),
the ‘conserving T -matrix approximation’ (CTMA) [44] again
is restricted to infinite U and stresses the importance of chains
of scattering events for band electrons off the local shell over
the whole duration of the external excitation process. These
are argued to contain those significant contributions, which
are known to lead to the correct singular threshold behaviour
of x-ray absorption spectra as predicted by Mahan [45] and
calculated by Nozières et al [16].

Correspondingly, essentially exact threshold exponents
are expected from the CTMA. This approximation can be
characterized with reference to the fully crossing diagram of
figure 4(a): the middle part between vertices 2 and 3 becomes
the lowest contribution to a T matrix, which is fully determined
by the implicit equation shown in figure 5(a). It generates the
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sequence of vertex corrections with scattering chains shown in
figure 5(b). Observe that only the first of these is contained in
PNCA.

In spite of a superficial resemblance, already the second
contribution is different from figure 4(b), which is more
easily recognized by counting the number of independent
spin summations. Indeed, CTMA-results [46] point to
considerably improved values of the threshold exponents;
nevertheless, the description of the local Fermi-liquid
formation, similar to PNCA, is still not fully satisfactory. Both
of these approximations involve time-consuming numerical
calculations; up to now a generalization to the even
more demanding case of finite U values has not been
reported.

Other approximation schemes involving additional simpli-
fying assumptions for the ionic propagators and vertex func-
tions, be it either in a non-conserving [47] or conserving fash-
ion [48], will not be considered here. Although they may be
useful with respect to computational effort, they have only been
justified for the case of large orbital degeneracy.

2.5. CA1 approximation

CA1 is designed to describe SIAM in the full range of values
for the local Coulomb repulsion U with good accuracy and
likewise for dynamical properties at general excitation energies
ω. Being a straightforward collection of all vertex corrections
up to order O(V 4) (as skeletons) it is conserving and contains
the leading contributions from all of the approximations
sketched above. More precisely, it can be defined by the set of
vertex corrections shown in figure 6(a), plus the corresponding
ones for the other vertex, indicated by points in figure 6(b). In
successive order the diagrams may be characterized as follows:
the first terms on the rhs are the bare vertices and define SNCA.
ENCA additionally contains the following vertex correction
with a single crossing electron or hole line, respectively. The
next three vertex corrections can be viewed as originating from
the ENCA diagram by dressing each of the vertices with a
single crossing line successively, i.e. they represent the first
iteration in the FNCA scheme. The last diagram is the fully
crossing contribution not contained in the FNCA; it is the
leading vertex correction in both approximations for infinite
U , PNCA and CTMA.

Whereas CA1 is explored in the following together with
the other approximations mentioned, a CA2-project will be
designed to add more vertex iterations like those included in
FNCA and longer scattering chains like those of the CTMA,
which can be incorporated via a T -matrix formalism.

3. Results from CA1 and comparison with other
impurity solvers

3.1. General remarks on the quality of impurity solvers

The following criteria have frequently been applied to judge
the quality of impurity solvers in connection with the Anderson
impurity model: (1) ionic propagators have to obey the
correct threshold behaviour, in accord with the relevant work
on orthogonality catastrophe and excitonic correlations in

Figure 6. CA1 collects all vertex corrections for general (finite and
infinite) values of U up to order O(V 4); in part (a) these are shown
explicitly for one of the two vertices. The analogous construction for
the other vertex is indicated in part (b) by dots. Again local lines are
dressed, i.e. the diagrams are used as skeletons; the vertex points on
the right-hand side, however, are bare ones.

the case with spin degeneracy [17, 45, 49, 50]. (2) The
infrared divergences of the perturbation series produce a
characteristic low-energy scale, usually referred to as the
Kondo temperature TK, which should faithfully be reproduced
by the approximation. (3) The many-body resonance
(Abrikosov–Suhl resonance, ASR) forming at temperatures of
the order of the Kondo scale TK and lower is pinned at a
position near the Fermi level, which is determined by Friedel’s
sum rule. (4) The shape of the ASR has to comply with a
form of the self-energy, which guarantees local Fermi-liquid
properties.

In the following, the four semianalytical impurity solvers
introduced hitherto for the SIAM with general, in particular,
finite values of U , i.e. SNCA, ENCA, FNCA and SUNCA
will be compared to the new CA1. Special emphasis will
be laid on the above four criteria. As a reference, NRG
calculations for the SIAM are also presented, which in the
low-energy regime should provide a reliable bias. They
have been produced with help of the very effective numerical
procedures presented in [51]. All other calculations have been
performed with a software package written for the solution
of a number of impurity and lattice models, in which various
impurity solvers can be combined with different methods for
the lattice aspects. Since it is based on adaptive strategies for
an all-purpose use, no particular provisions have been taken
to optimize numerical strategies for the SIAM in the deep
Kondo limit. Nevertheless, the program package seems to
work very reliably, although numerical convergence problems
and approximation errors become visible for certain extreme
choices of model parameters. In particular, the convolution of
several nearly singular factors in an integrand like that of (8) at
very low temperatures needs a thorough analytical preparation
and consumes much numerical effort, and likewise the iteration
of vertex parts depending on two energy variables for SUNCA,
FNCA and CA1.
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Figure 7. Double-logarithmic plot of ionic spectra, centred at the threshold, for a SIAM in SNCA (a) in the symmetric case with
ε� = −1.0, U = 2.0, β = ∞ and (b) in an asymmetric case with ε� = −1.0, U = 3.0, β = ∞, both for an Anderson width
�A ≡ πV 2�(0)

cσ (0) = 0.3 and a 3d–sc band density of states �(0)
cσ (ω), centred at ω = μ = 0; the bandwidth is 6 units. The threshold exponents

can be read off as one plus the slope of the asymptotic tangents drawn in the figures.

3.2. Ionic threshold behaviour

The shortcomings of SNCA have already been mentioned
in the foregoing section. It proves worthwhile, however,
to check how the known values of threshold exponents
for this approximation are recovered in the calculations;
this gives valuable hints as to how results for the other
approximations should be interpreted and, generally, how
reliably the algorithms work. It is interesting to note here
that the information given about the NCA-threshold exponents
(i.e. the case U = ∞) in connection with (11) is not complete
when regarding SNCA at finite U . The treatment of [15] based
on an ansatz for ionic self-energies is easily generalized:


M(ω + iδ) ≈ Eg − EM − i

Am
(ω − Eg)

1−αM

→ Pn0 M(ω + iδ) ≈ −iAM(ω − Eg)
αM−1. (13)

It furnishes the same asymptotic region near ω = Eg as in
the case U = ∞, characterized by α0 = 1

3 , α1σ = 2
3 for

(spin-) degeneracy ν = 2, for the whole unsymmetric regime
(ε� ≡ E1σ − E0 < −� and) 2ε� + U > 0. Asymptotically,
the propagator P2 does not contribute here. For U approaching
the value −2ε� from above, however, P2 becomes equal to P0,
which leads to

α1 = ν

2 + ν
, α0 = α2 = 2

2 + ν
(2ε� + U = 0),

(14)
ν being the degeneracy of ionic state |1σ 〉. For the model
with spin degeneracy only this means α0 = α1 = α2 =
1
2 . These values coincide with the presumably exact ones
taken from (11). Naturally this does not imply that SNCA
becomes correct for the symmetric SIAM. As we will see
below, for example, the shape of the ASR still reveals serious
shortcomings. The transition from U = ∞ to U = −2ε�

happens in a gradual way: the former asymptotic regime
around ω = Eg shrinks to zero and a different regime takes
over, which was originally situated at higher values of |ω− Eg|
and developed the exponents of (14).

In figures 7 and 8 we show the results of a rather precise
SNCA calculation of a symmetric SIAM in the deep Kondo
regime, part (a), and an asymmetric one, part (b). The
impurity states locally hybridize with a tight-binding simple-
cubic conduction band in three dimensions of width 6, the
Fermi level and band centre lie at energy ω = 0 and van Hove
singularities at ω = ±1. Shown in figure 7 are the spectra
of the relevant ionic propagators P0 and P1σ for T = 0 on
a doubly logarithmic scale with origin at the corresponding
threshold energies Eg. Numerical resolution is somewhat
below 10−4, acting as an effective temperature cutoff. The
asymptotic regime is entered only one order of magnitude
higher, at about ω− Eg ≈ 10−3. From the slope of the tangents
drawn one reads off the exponents α0 ≈ 0.53, α1 ≈ 0.47 in the
symmetric case, and α0 = 0.38, α1 = 0.76 in the asymmetric
one. Even if by a proper extrapolation, using several low values
of the temperature, these numbers can be brought closer to
the exactly known ones, i.e. (0.5, 0.5) and (0.33, 0.67), an
uncertainty of about 10% remains. This is enough, however,
to identify and discriminate the two different situations. With
lower numerical accuracy or higher temperatures T > 10−4 ≈
TK/200 the asymptotic regime will be hard to attain.

Figure 8(a) demonstrates that, in spite of accurate
threshold exponents, the shape of the ASR at ω = 0 in
the one-particle-spectrum for low T comes out as a quite
unphysical spike. Part (b) of this figure shows how the ASR
is deformed, when U is raised; the position of the ASR is
clearly temperature-dependent, and its flank at ω = 0 develops
a pathological steepness. This reminds us of the pathological
structure found at infinite U with a flat conduction band density
of states [15]. Since for our calculations a three-dimensional
simple-cubic tight-binding band structure was used, van Hove
singularities (i.e. kinks at ω = ±1) leave their traces in
the spectrum; their visibility also constitutes a test for the
numerical procedures used.

A good qualitative insight into the relation between the
five semianalytical impurity solvers under consideration can
be obtained from figure 9, which shows the spectrum of
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Figure 8. One-particle excitation spectrum of SIAM in SNCA, parameter values as in figure 7, β values as specified.

Figure 9. Spectral density of the empty ionic state M = 0 for a SIAM, calculated with the five semianalytical approximations discussed in the
text, parameter values as in figure 7, β = 1000. The shifted thresholds allow for fits of different quality to the Kondo temperature TK.

P0 = P2 for the symmetric SIAM discussed before at
temperature T = 10−3. Whereas part (a) gives an overall
view with the threshold to the left and a broad one-particle
resonance to the right, corresponding to a distribution of
contributing frequencies around ω = −E1σ − �E1σ (E0 is
set to zero in all calculations), part (b) with a much finer
energy resolution points to the discrepancies between the
different approximations visible in the low-energy regime.
One recognizes threshold peaks at different values of Eg,
in increasing order for FNCA, CA1, SUNCA, ENCA and
SNCA. Differences in Eg directly reflect the ability of the
approximations to reproduce the Kondo scale, which in this

regime can be expressed as [52]

[kB]TK = a
√

I exp
[
−π

I

]
, I = − 2U�A

ε�(ε� + U)
. (15)

Choosing a = U
2π

for U � bandwidth W [37] we
obtain T/TK = 0.04, i.e. the spectra represent the temperature
range well below TK, even with slightly different choices of
the coefficient a. If one accepts, for the moment, that the
FNCA with lowest Eg furnishes the closest approximation
to the real TK, as, for example, is implied by the NRG
calculation (see below), then the following conclusion can be
drawn: ENCA, SUNCA and CA1 all improve considerably
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Figure 10. Double-logarithmic plot of ionic spectra, centred at the threshold, for a SIAM in ENCA, parameter values as in figure 7.

on the SNCA. The leading vertex correction already included
in the ENCA contributes the essential part to this effect,
whereas the additional terms further taken into account in
SUNCA and CA1, respectively, have a relatively smaller
impact. This agrees with the original investigation of ENCA
and FNCA [37], where it was shown, that the ENCA already
captures the right exponential behaviour of TK for the SIAM
at finite U , whereas the inclusion of further vertex corrections
then only improves on the prefactor in this scale.

As will be shown below, the good estimate of TK furnished
by the FNCA does not imply that FNCA behaves well in all
other respects, e.g. concerning the four points mentioned in the
beginning. What is apparent, however, is the pronounced and
qualitatively similar threshold behaviour visible in all of the
five approximation schemes applied to the ionic spectra.

Since ENCA, SUNCA and FNCA all reduce to the NCA
in the limit 0 > ε� fixed, U → ∞, it is to be expected
that, in the asymmetric case, 2ε� + U > 0 an ultimate
asymptotic regime very near to ω = Eg exists, where the
ionic spectra are ruled by the NCA-threshold exponents. This
must not necessarily be true for the CA1 with its fully crossing
vertex correction, which does not vanish in this limit. It
can nevertheless be anticipated that, as a precursor, a regime
with ‘better’ threshold exponents at somewhat higher values
of |ω − Eg| occurs also for ENCA, SUNCA and FNCA. In
figure 10(a) a corresponding evaluation of ENCA is shown for
a temperature which again is far below TK and also below the
numerical resolution of about 10−3 or somewhat less. The
exponents for the symmetric case in figure 10(a), as read off
in the range 10−3 � ω � 10−2, are clearly near the value 0.5,
whereas in the asymmetric case of figure 10(b) only α0 ≈ 0.5
is really conclusive; a value α1 ≈ 0.5 can be justified only if
a tangent is drawn in the reduced range between ω ≈ 10−3

and ω ≈ 0.5 × 10−2 before the steeper decrease sets in.
Comparing figures 7(b) and 10(b) this seems to be a reasonable
procedure. It must be remembered here that the better
approximation cannot be evaluated with the same numerical
accuracy, at least not using the program package in its present
form. Figures 11(a)–(c) show the threshold behaviour for the
asymmetric model (again with ε1 = −1.0, U = 3.0 and
T  TK) obtained with SUNCA, FNCA and CA1. Similar

conclusions as for the ENCA can be drawn here: in all cases the
threshold exponents in the accessible asymptotic regime come
out near the value 0.5. At least for the CA1 this gives reason to
hope for an essential improvement of the true asymptotics of
ionic spectra over the SNCA.

3.3. One-particle excitation spectra

For a comparison of the one-particle excitation spectra
obtained with the five approximation schemes a calculation
with the NRG is also taken into account. This should give an
impression of the exact result, at least in a low-energy regime
near ω = μ = 0.

In figure 12 we present the results for the symmetric SIAM
and in figure 13 for the asymmetric one, at β = 1/kBT = 100
and β = 150, respectively, implying T being roughly half
TK, other parameters as before. First looking at parts (a) of
these figures, the following fact seems remarkable: peaks in
the NRG spectra are considerably broader compared with the
other cases and the features due to the van Hove singularities
in the band DOS are smeared out much more. At least part of
this, in particular at higher excitation energies, should be due to
numerical procedures used in the NRG calculation: it is based
on a discrete set of energy eigenvalues, which is considerably
spaced near the band edges and becomes logarithmically
denser for smaller excitation energy ω; interpolation then has
a smoothening effect. Whereas near the original resonances at
ω � ε� and ω � ε� +U the five semianalytical approximations
are certainly closer to the truth than the NRG curves, the
situation is not completely clear in the energy region around
the ASR, although here the NRG is most trustworthy.

The peak value close to ω = 0 at T = 0 is given via
Friedel’s sum rule to be � f σ (ω) = 1/π�A ≈ 1.06; this is
faithfully reproduced by the NRG, whereas the width of the
ASR might already be somewhat exaggerated by the NRG.
In effect, however, we take the NRG-ASR as our measure of
quality for the other approximations with respect to the low-
energy regime. Regarding the full range of excitation energies,
on the other hand, any of the other approximations (except
SNCA) might be more appropriate, depending on the purpose
of the calculation. With the halfwidth of the ASR taken as
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Figure 11. Double-logarithmic plot of ionic spectra, centred at the threshold, for a SIAM in SUNCA (part (a)), FNCA (part (b)) and CA1
(part (c)), all for the asymmetric case with parameter values as in figure 7.

Figure 12. One-particle excitation spectrum of a symmetric SIAM at β = 100, other parameters as in figure 7(a), in the five semianalytical
approximations discussed in the text and, additionally, calculated with the numerical renormalization group (NRG). Part (a) reveals
shortcomings of the NRG-method at large excitation energies, whereas in the low-energy region of part (b) the NRG-curve can be used as a
reference for the other approximations.

measure for the many-body scale TK, certainly the FNCA, with
its vertex corrections systematically iterated through all orders,
compares most favourably with the NRG. On the other hand,
the FNCA spectrum clearly exaggerates the height and thus the
total weight of the ASR: the limit of 1/π�A for the peak height

becomes violated even more for lower temperatures. Insofar,
CA1 seems to represent a good compromise and even ENCA
does not work too bad.

The lesson to be learnt from these results is that improved
semianalytical impurity solvers of this type should incorporate
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Figure 13. Analogue of figure 12 for the asymmetric case with β = 150, other parameters as in figure 7(b).

Figure 14. Like figure 12, but with β = 1000, i.e. at T  TK.

skeleton diagrams of two types in a well-balanced way: classes
of iterated vertex corrections have to be accompanied by chains
of iterated particle-scattering events, being related to each other
as exchange partners [37, 44, 46]. In light of the discussion
in section 2, CA1 serves as a further step in this direction.
Regarding the regime at high excitation energies ω ≈ ε� +
U the comparison of figures 12(a) and13(a) reveals a trend,
which for even larger values of U becomes more and more
pronounced and which apparently is not well captured by the
NRG, at least with its present numerical performance: the
resonance due to double occupancy of the local shell becomes
sharper with increasing U , in particular when ε� + U reaches
the order of the upper band edge ω ≈ 1

2 W = 3. Beyond
this value, the peak keeps its weight but rapidly loses its
width and finally vanishes as a single spectral line out of the
accessible region. This is faithfully reproduced by any of the
five semianalytical impurity solvers under consideration.

Figure 14 gives an impression about qualities and failures
of the five approximations as applied to the full calculation
of one-particle spectra at very low temperatures: ε� =
−1.0, U = 2.0 and β = 1000, i.e. T/TK = 0.04 have
been chosen here. Whereas the ionic spectra in all five cases
come out rather reliably with the procedures used in our

program package, the subsequent folding of ionic propagators
and defect propagators (see, e.g., [14]) can produce spurious
results near ω = 0. With very sharp thresholds in all
quantities at low T slight displacements of the maxima (as a
consequence of numerical procedures and rounding errors) can
have a large effect on the integrals containing several of these
quantities. Although figure 14, too, supports the conclusions
drawn before, the SUNCA curve and to a somewhat lesser
degree the FNCA curve, show a spurious double-peak structure
near ω = 0, supposedly due to such threshold shifts. In
addition, the FNCA curve should not be taken too seriously
very close to ω = 0, although its shape is in accord with
the numerically more precise SNCA calculation in figure 8(a).
FNCA overestimates the ASR peak height strongly, whereas
CA1, in spite of a too high peak value, rather favourably
compares with the NRG curve.

3.4. Fermi-liquid properties

As a final test for our new CA1 the local Fermi-liquid
properties are inspected in figure 15. For this purpose the
imaginary part of the self-energy

−Im 
 f σ (ω + iδ) = π� f σ (ω)

(ReG f σ (ω))2 + (π� f σ (ω))2
(16)
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Figure 15. Imaginary part of the self-energy of local electrons (absolute value) for a SIAM, calculated within CA1, as a test for local
Fermi-liquid properties. Temperatures as shown, other parameters as in figure 7.

is shown for a few temperatures near and well below TK. The
formation of a minimum at ω = 0 obviously takes place. In
the asymmetric case of figure 15(b) a displacement of this
minimum away from the Fermi level with growing temperature
is recognized, similar but somewhat weaker than has been
reported before for (S)NCA and ENCA [37], as well as for
the PNCA, the latter being a U = ∞ theory with crossing
contributions to vertex corrections in high orders [41]. The
CA1 result for the value of −Im
 f σ (ω + iδ) at its minimum
falls short of the exact limiting value (π� f σ (ω))−1 = �A =
0.3 for the lowest temperatures. This is in accord with the
too high ASR value seen, for example, in figure 14. In a
quantitative sense, however, this result improves on ENCA
and, much more, on (S)NCA. Obviously, the minimum can
well be fitted by a parabola as long as the temperature does
not become so low that numerical deficiencies near ω =
0 become predominant. Also its position and height, as
well as the quadratic coefficient, may be compared to exact
results for Fermi liquids [11, 58], e.g. as a guideline for
corrective measures when using these impurity solvers in
lattice calculations. These conclusions are similar to those
for the PNCA published before [41]. Furthermore, it is a
remarkable fact how dramatic the scattering rate raises for
increasing excitation energies. In the range of the ionic
resonances ω = ε� and ω = ε� + U it becomes high enough
to completely prevent locally a band picture even for the c-
electrons. This will become even more evident in the lattice
calculations of the next section, where the effect occurs on each
lattice site and thus affects the whole Bloch states.

4. Impurity solvers and lattice theories

4.1. Cumulant perturbation theory of strongly correlated
lattice models

The importance of impurity solvers for approximate solutions
of lattice problems came to light in theories like ATA [19],
LNCA [21] and XNCA [20], which all used a picture of
effective sites and relied on NCA as the best available
implementation in those days. These three forms of effective
site theories aimed at a solution of the Anderson-lattice model
in the context of the heavy fermion problem, and thus were
based on a particular local shell structure with well localized f
states and extended c states, with only the former being subject
to a local Coulomb repulsion. In most cases, transfer also was
restricted to the c-states only, which together makes possible a
reduction from the matrix formulation, envisaged in section 2
and shortly outlined below, to a scalar formalism.

The three theories differed in the way in which the
dynamics on general lattice sites influenced the representative
effective site considered: in ATA only the coherent build
up of quasiparticle bands from scattering by independent
Anderson impurities on the lattice sites was taken into
account, thus ignoring exhaustion problems and important
renormalization effects. LNCA used self-consistently modified
local excitations at the effective site; unlike XNCA, however,
it introduced weight factors for nonlocal processes in
order to approximately factorize the partition function into
contributions from an unperturbed band and independent
effective sites. XNCA finally established the form of self-
consistency between effective site and surrounding medium
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which becomes exact in the limit of infinite spatial dimension
and which nowadays is regarded as the characteristic defining
feature of the DMFT.

In a local approach a lattice Hamiltonian H = ∑
ν H0ν +∑

ν �=ν′ Vν,ν′ is built up from local Hamiltonians H0ν on lattice
sites Rν , each of the type H0� considered in section 2,
and nonlocal parts Vν,ν′ , which contain one-particle terms
like transfer or hybridization and possibly two-particle terms,
i.e. nonlocal interactions between electrons on two different
sites ν and ν ′. Vν,ν′ is usually expressed via the elementary
creation and annihilation operators f (†)

νmσ which define the local
Fock spaces, whereas the diagonalization of H0ν involves the
‘ionic states’ as described in section 2. In principle there is
complete freedom in defining what should be such a local
subsystem, a single ionic shell, or an ion or a molecular
complex, or even a cluster of ions or complexes. The need to
diagonalize them, even when restricted to e.g. the low-energy
regime, may however set limitations to the size of what can
be regarded as local. At the outcome H0ν will be a finite
matrix in the space of local many-body eigenstates |ν n0 M〉. A
one-particle transfer term contained in Vν,ν′ will, for example,
induce changes |ν n0 M1〉 → |ν n0 − 1 M2〉, |ν ′ n′

0 M ′
1〉 →

|ν ′ n′
0+1 M ′

2〉.
A convenient way of keeping the formalism simple is to

work generally with the original one-particle quantum numbers
(m, σ ) and to built up local matrix Green functions of the
type G

ν
(z) = (Gmσ,m′σ ′(z)) for one-particle propagation, and

corresponding higher ones; these matrices involve information
about the composition of the local many-body eigenstates,
e.g. via the coefficients of fractional occupancy. Thus an
overall (N × N)-matrix formalism for lattice processes is
established with N being the number of local one-particle
states taken into account and local excitations of single
electrons are translated via (2) into the dynamics of many-
body eigenstates. Nonlocal interactions can be viewed as
(simultaneous) two-particle transfers and be handled in an
analogous fashion.

The local approach treats the local dynamics exactly, as
apparent in the many-body eigenstates. In the presence of
strong and dominating local interaction matrix elements this
seems a natural starting point for a lattice theory. However, it
turns to a disadvantage when a perturbation expansion in terms
of the nonlocal parts Vν,ν′ of the Hamiltonian is to be set up.
An attempt to factorize, for example, a general contribution to
the partition function with the help of Wick’s theorem stops at
an intermediate level: in the case of, for example, a pure one-
particle nearest-neighbour transfer mechanism, time-ordered
expectation values of products of creation and annihilation
operators belonging to sites which knot together different
propagation paths of single particles, remain as unfactorized
parts of internally connected contributions Bλ. These also
contain matrix elements t of Vν,ν′ , symmetry factors rλ, a sign
(−1)χλ , site summations and time integrations, as well as an
indicator function F assuming values 0 or 1, which realizes
site exclusions between all the Bλ occurring via nλ = 1.
Schematically:

Z

Z0
=

∑

{nλ=0,1}

( ∞∏

λ=1

Bnλ

λ

)
F({nλ}),

Figure 16. This contribution to the partition function is a product of
three disconnected pieces, each of them containing single-particle
loops. In two of the pieces loops are glued together at sites (knots),
which are marked with a double circle. These nodes give rise to
cumulant vertices for local two-and three-particle interactions,
respectively.

Bλ = (−1)χλ

rλ

( ∏
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∫
dτ (1)

μ

∫
dτ (1)′

μ · . . .

· 〈T ( fm(1)
μ σ

(1)
μ

(τ (1)
μ ) f †

m(1)′
μ σ

(1)′
μ

(τ (1)′
μ ) · . . .)〉0

)

·
∏

chains C of transfers between knots

∏

intermediate sites ν along C

×
∫

dτ (1)
ν

∫
dτ (1)′

ν · . . .

· t · 〈T ( fm(1)
ν σ

(1)
ν

(τ (1)
ν ) · f +

m(1)′
ν σ

(1)′
ν

(τ (1)′
ν ))〉0 · . . . · t . (17)

In general, local correlations between all of the excitations
caused at the nodes by intersite transfers remain. The emerging
picture is that of the disconnected sets of loops over the lattice,
each set being internally glued together at certain sites with
four or more intersite transfer legs, see figure 16 for a simple
example. Moreover, while keeping the topological structure of
such a graph, the position of sites involved cannot be summed
freely over the lattice, thus preventing a convenient momentum
space formulation. As a consequence, a linked cluster theorem
is also not available for Green functions of the lattice problem,
since a partition function, incorporating all diagrams not linked
to external sources, cannot be factored out: the partition
function can also not be represented as an exponential of a sum
of single connected graphs, thus preventing a straightforward
extensivity property of the thermodynamic potential.

A way out of this dilemma uses a representation of
higher-order local time-ordered expectation values at nodes
as a sum over products of successively smaller ones, which
in total cancel out except for the original highest term;
when appropriately grouped together they define a cumulant
expansion of local n-particle Green functions, containing a set
Mn of n local destruction operators and a set M̃n of creation
operators:

Gn(Mn; M̃n) = ∑

all partitions P of Mn and P̃ of M̃n into subsets
(

N (q)
nq ,Ñ (q)

nq

)

× (−1)χp+χ p̃
∏

q

Gc
nq

(N (q)
nq

, Ñ (q)
nq

),

Gc
2

(
fm(1)

μ σ
(1)
μ

(τ (1)
μ ), fm(2)

μ σ
(2)
μ

(τ (2)
μ );

f †

m(2)′
μ σ

(2)′
μ

(τ (2)′
μ ), f †

m(1)′
μ σ

(1)′
μ

(τ (1)′
μ )

)
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= G2(1, 2; 2′, 1′) − [G1(1; 1′)G1(2; 2′)
− G1(1; 2′)G1(2; 1′)], . . . . (18)

The right-hand side of this expression can be viewed as
containing two contributions, each playing a different role
in the expansion: the maximally decomposed terms, being
products of only one-particle Green functions at this site,
together just furnish the result which would be obtained if
Wick’s theorem were valid for the local dynamics. The rest
of the terms represent all possible local decompositions of
the knot in the graph into products of independent irreducible
knots of equal or lower order with together the same number
of intersite legs as the original expectation value; among them
are possibly local one-particle Green functions but at least one
of higher order, i.e. with more than two intersite legs.

An evident approximation can be obtained as follows.
Keeping only the maximally decomposed terms, all loops
of the diagram, which were glued together originally, would
be disconnected, the partition function would become an
exponential of the sum of all different loops, and a free
summation of all site positions over the lattice would leave
only contributions differing by the number of links. Likewise,
for example, the lattice-one-particle Green function would
contain, after dividing out the partition function, a sum over
paths differing only by the number of links, which can be
summed as a geometric series (in matrix space).

The results for a one-particle Green function and
thermodynamic potential F can be given explicitly as

GFT
k

(z) = [G(0)(z)−1 − t
k
]−1,

FFT − F (0) = 1

β

∑

iωn

∑

k

(Tr[ln G(FT)

k
(iωn)]

− Tr[ln G(0)(iωn)]),

(19)

with G(0)(z) the Green function from the known solution
of the isolated local subsystem. The above results may be
viewed as a very general form of the well-known Hubbard-
I approximation [53], to which they reduce when the local
subsystem is a simple s-shell and Vν,ν′ contains only nearest-
neighbour one-particle transfers i.e. in the case of the Hubbard
model.

The rest of the terms in the cumulant-decomposition
furnishes all possible combinations of one-particle scattering
events of this site, serving as nodes with two intersite legs
in simple transfer chains, and of higher-order nodes with
more intersite legs; together they realize a restricted way
of glueing together the original connected set at this site.
The contributions resulting from all of these local cumulant
decompositions in the set can be re-interpreted in terms of a
perturbation expansion with respect to an infinite set of local
n-particle cumulant interactions, with n between 2 and infinity.

The ‘noninteracting’ starting point of this expansion is
the aforementioned generalized Hubbard-I-theory free of such
interactions (‘free theory’). A perturbation expansion with the
corresponding ‘free’ propagators for the particles and the set
of all local cumulant vertices as interaction terms along the
conventional lines a la Feynman thus faithfully produces all
contributions to partition function and lattice Green functions

and re-introduces the applicability of the linked cluster theorem
and all benefits connected with it into this new form of the
theory.

The price paid for the conceptual progress described above
for the lattice problem, i.e. the applicability of conventional
methods in perturbation theory for the lattice aspects, lies in
the large number of vertices appearing and in their dynamical
nature, i.e. their multiple time dependences. It should also be
clear that the perturbation series obtained in this way are based,
although looking conventional in a superficial way, on quite
unconventional definitions of connectedness and irreducibility:
whereas the diagrams remaining i.e. for a one-particle Green
function are linked to the external sources and consist of one
connected piece (we exclude anomalous terms here), being
glued together via local cumulant vertices, they would in most
cases fall apart into several unconnected pieces, only one of
them bearing the two external links, when the cumulants are
made explicit in terms of the original expectation values.

The pieces without links remaining in this case as factors
are partially due to the partition function in the denominator of
the original expression and must consistently be included for
a proper renormalization of, for example, excitation spectra.
It is therefore not a trivial problem to define consistent
approximations in cumulant perturbation theory.

A straightforward evaluation of cumulant vertices even in
low orders requires some effort but can be managed e.g. with
methods of direct perturbation theory [54]. The somewhat
lengthy expression of the local two-particle cumulant has been
published before [55] and served as basis for calculations
of one-particle properties of the Hubbard model along the
lines of Hartree-like expansions [56], also in a self-consistent
fashion [54]. It should be clear, and can in fact be proven [54],
that these approximations are not able to capture the interesting
many-body aspects in the low temperature regime for large
values of the local Coulomb repulsion U , whereas leading
effects of band splitting, which are present in principle already
in the Hubbard-I approximation, and of band deformation can
be captured. What is needed for a proper approximation of
strong correlation effects are summations of infinitely many
processes with cumulant vertices up to infinite order to cope
with the problem of long-time decay of correlations and of the
infrared problems connected with them.

The local starting point of the cumulant expansion and
its formulation in real space open the possibility of a local
infinite order resummation, which would be more difficult
to recognize after unrestricted Fourier-transformation. In the
latter k-space version of cumulant perturbation theory, due to
the unrestricted site summations, processes taking place on the
same site in a diagram cannot be identified anymore and may
appear completely uncorrelated.

Moreover, also individual parts of the partition function
in the original denominator connected to the same site and
necessary for a proper local normalization are hidden in
the cumulant and cannot readily be identified. A proper
conserving approximation of infinite order should unite such
pieces of local processes in a consistent way. This furnishes
the guideline for a ‘locally complete approximation’: collect
all those diagrammatic contributions to the one-particle-Green
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Figure 17. Different forms of the Dyson equation for the case of
one-particle transfer only, in cumulant perturbation theory. Care has
to be taken in specifying nonlocal connections, which is done here
via the broken transfer lines being made explicit. Single unbroken
lines relate to the propagators in free theory, the hatched rectangular
box is one-particle irreducible in cumulant (and not in regular)
perturbation theory.

function of cumulant perturbation theory in real space, where
both external legs belong to the same site, regardless whether
they belong to the same or to different vertices situated at this
site.

The formulation of a Dyson equation for the one-
particle-Green function in cumulant perturbation theory is
straightforward, but needs some care in distinguishing local
and nonlocal parts of the propagation process: certain intersite
transfers have to be made explicit. In a straightforward way
one-particle-irreducible pieces can be identified, which either
are linked to external sources or to transfers. It is useful
to amputate local factors G(0)(z) (the Green functions of
isolated local subsystems) at their two ends, thus defining
irreducible cumulant self-energies 
(amp)

k
(z). Since the two

ends can be situated at two different sites, they will generally
be k-dependent after Fourier-transformation. Two equivalent
forms of the Dyson-equation are visualized in figure 17; their
algebraic form is:

G
k
(z) = G(FT)

k
(z) + G(FT)

k
(z)
(amp)

k
(z)G(0)(z)

+ G(FT)

k
(z)
(amp)

k
(z)G(0)(z)t

k
G

k
(z)

= G̃
k
(z) + G̃

k
(z)t

k
G

k
(z)

⇒ G
k
(z) =

[
G̃

k
(z)−1 − t

k

]−1
, (20)

with

G(FT)

k
(z) =

[
G(0)(z)−1 − t

k

]−1 ≡
[
z − 
(0)(z) − t

k

]−1

(21)
G̃

k
(z) = G(0)(z) + G(0)(z)
(amp)

k
(z)G(0)(z), (22)

where 
(0)(z) is known from the solution of the local

subsystem. The irreducible cumulant self-energy 
(amp)

k
(z)

defined above must not be confused with the standard self-
energy 
(st)

k
(z) defined via

G
k
(z) =

[
z − 
(st)

k
(z) − t

k

]−1
. (23)

The connection between them, which can be expressed as


(st)
k

(z) = 
(0)(z) + 
(amp)

k
(z)

[
1 + G(0)(z)
(amp)

k
(z)

]−1
,

(24)
sheds some light on the possible momentum dependence of the
self-energy. We expect that this may contribute to the question

Figure 18. Contributions neglected in the self-energy matrix in the
‘locally complete’ (LC) approximation, one-particle transfer only.
Part (a) shows a process, in which two loops, based at the same site,
are correlated at a different site by a two-particle cumulant vertex.
Part (b) shows a process in which the external particle is extracted at
a site different from where it was injected.

of how to incorporate nonlocal correlations into lattice theories
(see [27, 60] and references therein).

In a local approximation, the two external links of

(amp)

k
(z) are restricted to be situated at the same site, which

eliminates the k dependence from 
(amp)(z). This type of
approximation is very much in the tradition of the early
effective site theories mentioned above. It brings formal
advantages but involves shortcomings concerning the neglect
of certain nonlocal correlations.

Still it does not lead to an easily tractable calculational
scheme, which is due to classes of remaining nonlocal
correlations in 
(amp)(z) as indicated in figure 18(a); part (b) of
this figure, on the other hand, shows correlations not included
in the local form of 
(amp)(z). Eliminating diagrams like the

one shown in figure 18(a) leads to a restricted form 
(lc)(z)

of 
(amp)(z), which is at least ‘locally complete’ and may be

characterized as follows: In a diagram contributing to 
(lc)(z)
cumulant vertices of order n � 2 (four or more external links)
are forbidden to appear, since they would correlate two or
more one-particle loops based at the same site. Therefore
one-particle loops generally will contain insertions with two
external links (and no more), which are of the same class
as those contributing to 
(lc)(z); in this way a complete
hierarchical structure of independent loops remains.

Amazingly, the locally complete approximation thus
defined can quite generally be brought into a form suited
for a straightforward solution, in principle without further
approximations or restrictions. It turns out to be equivalent
to general formulations of the XNCA or the DMFT
methods [20, 54]. The key to a simpler formulation of
the locally complete approximation of cumulant perturbation
theory lies in the reduction of all nonlocal topological elements
in a diagram to independent one-particle loops as described
above. This makes it possible to trace back the k-summed form
of (20), i.e.

G(z) ≡ 1

N

∑

k

G
k
(z) = 1

N

∑

k

[
G̃(z)−1 − t

k

]−1
, (25)

to the irreducible part T̃ (z) of the (unrestricted) loop
propagator

T (z) = 1

N

∑

k

T
k
(z), T

k
(z) = t

k
G

k
(z)t

k
. (26)
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It turns out that G(z), as the local one-particle-Green
function (i.e. both external sources are at the same site), can
be constructed as a functional G[z; �

T̃
(ω)] of the irreducible

loop spectrum �
T̃
(ω) = − 1

π
Im T̃ (ω + iδ) and G̃(G, T̃ ) has

a simple expression via G and T̃ . Therefore (26) reduces to

an implicit equation for T̃ (z) and consequently also furnishes

solutions for G̃(z) , G
k
(z) and G(z).

The original loop propagator T (z) embodies the
possibility that the loop connects to its basic site at several
intermediate instances due to the unrestricted site summations
contributing to G

k
(z) in cumulant perturbation theory. The

whole loop may be viewed as a repetition of irreducible pieces,
i.e. loops without such intermediate connections to its basic
site. The relation between both loop propagators takes the form
of a Dyson equation:

T (z) = T̃ (z)+T (z)G̃(z)T̃ (z) ⇒ G̃(z) = T̃ (z)−1 −T (z)−1 ,

(27)
which was first recognized in [57]. Equation (27) generalizes
earlier attempts for implementing a ‘site-exclusion principle’
for the propagation of quasiparticles under the influence of
strong local correlations [3].

It is easy to visualize the effect of loops on the dynamics
of the basic site of 
(amp)(z), i.e. the one bearing the two
external links, when, for example, the picture suggested by
direct perturbation theory is used. Apart from the fact that
a projection of �

T̃
(ω) onto a local 1-P-state is used in all

formulae instead of the spectrum �(0)
cσ (ω) of band electrons, the

way to calculate G(z) is the same as in the impurity problem
considered in section 2.

Insofar, an effective impurity is constructed, and the
spectrum of the irreducible loop propagator may be viewed as
a matrix of real, frequency-dependent effective external fields,
constituting a ‘bath’ or a ‘dynamical mean field’. Conclusions
about G̃(z) are to be traced back to the definition G̃(z) =
G(0)(z) + �G̃(z), �G̃(z) = G(0)(z)
(amp)(z)G(0)(z) in (20),
reproduced here for the locally complete approximation.

At first glance it may seem as if the diagrams contributing
to G̃(z) in cumulant perturbation theory via 
(amp)(z) would
just reproduce the original contributions of the effective
impurity problem. However, this cannot be true, since the
introduction of cumulants also serves the purpose of removing
restrictions from site summations, giving G

k
(z), the simple

form used in (25). G̃(z) thus contains compensation terms for
loop contributions produced by t

k
in the denominator, i.e. in the

corresponding geometric series with local parts G̃(z) and links
t

k
. One possible way of uncovering the relation between G(z)

and G̃(z) consists in formulating the difference between both
quantities just as the contribution for loops to be compensated,
i.e.3

G̃(z) − G(z) = −G̃(z)T (z)G̃(z). (28)

3 An alternative statement of this relation is

G̃(z)T (z) = G(z)T̃ (z) ,

which is realized by analysing the expansions of G(z) and T (z) in terms of

irreducible loops T̃ (z):

When (27) is inserted into (28) to eliminate T (z) in favour of

T̃ (z), one obtains

G̃(z) =
[
G(z)−1 + T̃ (z)

]−1 ≡ G̃(G, T̃ )(z), (29)

thus completing the reduction of (25) to an implicit equation
for T̃ as envisaged above.

It should finally be remarked that the contributions in
cumulant perturbation theory to the quantities considered here,
which may be classified as connected pieces not linked to
the external sources in the original picture, are absorbed in
the proper normalization of spectra and one-particle Green
functions; they originate from a division by the partition
function as explained above. Using a consistent locally
complete summation of these contributions, they become
absorbed in the partition function of the effective site problem.
In direct perturbation theory, for example, this is taken into
account by properly normalized defect propagators.

4.2. Periodic Anderson model: part I

The formal development outlined above leads to a result, which
constitutes a matrix generalization of DMFT. The original
concern of LNCA and XNCA was the physics of the Anderson-
lattice model:

Ĥ =
∑

σ,ν

(
ε� f̂ †

νσ f̂νσ + U

2
n̂ f

νσ n̂ f
νσ̄

)

+
∑

k,σ

tk ĉ†
kσ ĉkσ +

∑

k,σ

(
Vk ĉ†

kσ f̂kσ + h.c.
)

(30)

and it should shortly be explained how a scalar form of the
equations is achieved for this case. The local subsystem here
involves for the simplest case a basis of four one-particle states
on a given lattice site ν, the two f states with spin up and down
subject to the Coulomb repulsion U , and two c states which do
not interact with each other or with the f states. All matrices
considered above are four by four, with t being spin-diagonal
and transferring only c and f electrons to nearest-neighbour c
states with respective matrix elements t and V .

Although unphysical in most cases, a purely local
hybridization V is often used for simplicity; it can be
treated in close analogy to the nearest-neighbour case for
the reason explained in the following. Since the c electrons
remain noninteracting, Wick’s theorem can be used for them.
Consequently, no cumulant vertices of order n � 2 exist with
links to c Green functions. G(0)(z) is block-diagonal with a

diagonal c block and a f block, and likewise is G(0)(z)−1,
which is used in the amputation of vertices.

The block structure mentioned is 2×2 with respect to spin;
without magnetic splitting and with spin-preserving transfer
and hybridization one may fix a spin direction σ and treat these
blocks as scalars. As a consequence, 
(amp)(z) and also �G̃(z)
have nonzero matrix elements only in the diagonal, i.e. only
G̃ f f σ and G̃ccσ (z) = G̃0

ccσ (z) enter the calculation according
to the definition in (20). Nondiagonal elements come into play
only via T̃ (z), since propagation along a loop can mix c and f
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states. Equation (29) now gives after matrix inversions:

T̃ f f σ (z) = G̃ f f σ (z)−1 − Gccσ (z)

Nσ (z)
,

T̃ccσ (z) = G̃ccσ (z)−1 − G f f σ (z)

Nσ (z)
,

T̃c f σ (z) = T̃ f cσ (z) = Gcf σ (z)

Nσ (z)
,

Nσ (z) = G f f σ (z)Gccσ (z) − Gcf σ (z)2.

(31)

These matrix elements would all have to be used if the
four states were locally correlated. However, in the simple
form of the Anderson model the local c states do not directly
influence the f -state dynamics. Therefore one can reduce the
local problem to one of f states by combining site-irreducible
loops in a way that only a restricted form of irreducibility with
respect to the f states on the basic site is realized, i.e. the c
level on this site is treated like a different site.

The combined loop propagator connects local f states and
obeys a generalized Dyson equation of the form T̃ (red)

f f σ (z) =
T̃ f f + T̃ f cG̃ccT̃c f + T̃ f cG̃ccT̃ccG̃ccT̃c f + · · · and hence may be
summed up to

T̃ (red)

f f σ (z) = T̃ f f σ (z) + T̃c f σ (z)2G̃ccσ (z)

1 − G̃ccσ (z)T̃ccσ (z)
. (32)

If now the quantities T̃ on the rhs are replaced via (31),
one obtains the scalar equivalent to (29):

T̃ (red)
f f σ (z) = G̃ f f σ (z)−1 − G f f σ (z)−1 . (33)

As is clear from this construction, the spectrum of T̃ (red)

is to be used in the effective site problem, i.e. G f f σ (z) =
G f f σ [z; �T̃ (red)

f f σ
(ω)].

Also the inverse of the last term in (33), i.e. G f f σ (z),
has to be calculated via (25) using a matrix inversion, which
involves the nondiagonal transfer matrix t

k
= tk 1 + Vk σ

x
.

After explicitly formulating this step the reduction from a
matrix to a scalar form of the theory for the Anderson-lattice
model is completed.

Whereas there might exist easier ways of setting up the
XNCA/DMFT-self-consistency cycle for this model [20, 62],
the above argument generally demonstrates the connection
between the universal matrix formulation and possible reduced
schemes. If, for example, electrons in c states would interact
locally (but again not with those on f states), the matrix
problem would reduce to two scalar problems of type (28),
which would be coupled only via the lattice summation, i.e. via
the k sums in (25). This also points to a possible treatment of
more general models with inequivalent sites.

Finally, since formally the local c state acts like a different
site on its f states, a local hybridization can be treated in the
same way as outlined above: the first and last transfer step,
represented in (26) by factors t

k
, now carries a k-independent

matrix element V . This only enters the calculation in a
modified t

k
= tk 1 + V σ

x
to be used in (25).

The Anderson-lattice model furnishes a good testing
ground for the quality of impurity solvers because of the
particular impact of coherence in the half-filled case. In
the symmetric situation of the simple version without orbital
degeneracy considered above, with two electrons per site, the
Luttinger theorem predicts a Fermi surface filling the whole
first Brillouin zone, which should lead to the formation of an
excitation gap due to Bragg scattering in the quasiparticle DOS
for temperature T approaching zero [59, 61]. This signature of
onsetting coherence is hard to recover in approximations, since
it requires a pronounced structure in the self-energy.

On the one hand, the increasing lifetime of quasiparticles
with T → 0 near the Fermi level requires the (near)
cancellation of the term �A (see section 5) in the local self-
energy by the buildup of scattering during propagation along
loops through the lattice (see above), and on the other hand,
formation of a gap should go along with a narrow peak in Im


signalling strongly increased resonant scattering. This implies
a fine balance between different contributions, which is easily
destroyed by inconsistent approximations.

4.3. Hubbard model

In order to elucidate the effect of increasing lifetime as T → 0
one may consider the Hubbard model:

Ĥ =
∑

σ,k

tk ĉ†
kσ ĉkσ + U

2

∑

σ,ν

n̂c
νσ n̂c

νσ̄ (34)

where at half-filling and zero temperature scattering should
be absent near ω = 0 in the Fermi-liquid phase, but which
should not develop a coherence gap: since according to
Luttinger’s theorem the Fermi surface now lies well inside
the first Brillouin zone no Bragg scattering should be effective
there.

Figure 19(a) shows the corresponding local DOS, obtained
within different approximations, two of them within the locally
complete scheme (DMFT) using SNCA and ENCA as impurity
solvers, respectively.

A reduction process from the matrix-formalism analogue
to the Anderson-lattice model is not necessary for the Hubbard
model, since the latter is of scalar type from the outset.

The other approximations are Hartree–Fock, effectively
meaning U = 0 in the half-filled case, and Hubbard-I (‘free
theory’). The last two cases show no temperature dependence,
whereas β = 100 and β = 10 are chosen for SNCA and
ENCA in order to produce comparable heights of the many-
body resonance, which should reach the Hartree–Fock value at
T = 0.

In a k resolution this DOS produces the quasiparticle band
structure, as shown for the ENCA calculation in figure 19(b)
along the [111] direction of the simple-cubic Brillouin zone.
At high excitation energies the two split bands, which
in Hubbard-I approximation contain sharp resonances with
reduced spectral weight are so much washed out that a concept
of band electrons can hardly be justified here; this is in accord
with the conclusion in the last section about local scattering
near an impurity. The narrow band of pronounced quasiparticle
resonances around ω = μ = 0 shows no splitting and gap
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Figure 19. One-particle excitation spectrum of the Hubbard model, calculated within XNCA/DMFT, using ENCA as an impurity solver, for
the half-filled case with nearest-neighbour hopping in a 3d-sc lattice. Parameter values ε = −2, U = 4 and β not too large favour a metallic
phase with a Fermi liquid. In part (a) the local DOS is compared for different approximation schemes, also including Hartree–Fock (resulting
in a tight-binding band of width 6) and the Hubbard-I approximation. Beside ENCA with β = 10 also SNCA with β = 100 is used as
impurity solver. The arrows indicate the positions of the ionic levels ε and ε + U . Part (b) shows the k-resolved excitation spectrum along the
[111] direction, from which a quasiparticle band structure may be derived within XNCA/DMFT-ENCA. The imaginary part of the self-energy
(absolute value) in part (c) visualizes the formation of the Fermi liquid with decreasing temperature (kB)T = β−1.

formation. The corresponding decrease of scattering is shown
in figure 19(c): in lowering the temperature from β = 2 to 10
the imaginary part of the self-energy forms a steep and nearly
quadratic minimum as a sign of Fermi-liquid formation.

Quite generally it can be stated that the ENCA impurity
solver for the Hubbard model produces good results and
accomplishes an acceptable tradeoff between accuracy and
numerical effort. For not too low temperatures it thus
represents a reliable and usable alternative to impurity solvers
like NRG, QMC, MPT, etc, known from the literature (see, for
example, [22, 63]).

4.4. Periodic Anderson model: part II

The Anderson-lattice model behaves differently than the
Hubbard model, as shown in figures 20 and 21. Parts 20(a)
and (b) contain the local one-particle excitation spectra for
c and f electrons, respectively, each calculated with three
approximations of increasing complexity. The tight-binding
approach for the band (c) states treats all interactions on the
mean field level and furnishes the connected curve known from
the Hubbard model with its edge-like van Hove singularities at
ω = ±1 and square-root band edges at ω = ±3.
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Figure 20. One-particle excitation spectra of band (c-) electrons and of local ( f -) electrons for an Anderson-lattice model, calculated within
XNCA, using CA1 as impurity solver, for the half-filled case (two electrons per site), with a tight-binding c-band of width 6 in a 3d-sc lattice
and local hybridization. Parameters are ε� = −1.5, U = 3, β = 15 and �A ≡ πV 2�(0)

cσ (0) = 0.3. Parts (a) and (b) show the local density of
c and f electrons, respectively, both in comparison with a Hartree–Fock result and a calculation within ‘free theory’. Part (c) contains the
imaginary part of the ‘local self-energies’ (absolute value) for c and f electrons. The spikes seen in the middle of the gap region can cause
numerical problems.

Hybridization with the correlated local f states at one-
particle energies ω = ε� = −1 and ω = ε�+U = +1 produces
the gaps visible in the result of the free theory, which furnishes
three disconnected bands with variable spectral weights. The
gaps are somewhat displaced by level repulsion, which is an
effect of hybridization, too. Interactions, much better taken
into account in the locally complete approximation using a
CA1-impurity solver, wash out the two gaps and produce a
repulsion of c weight away from the Fermi level ω = 0 as
a consequence of the formation of the many-body resonance
with predominant f character. This resonance is clearly seen
in figure 20(b), where also the two local one-particle levels
of the isolated f shell as arrows and the spectrum of the
free theory are shown. In the latter, two gaps are recognized
as counterparts of those in figure 20(a); the f states acquire
dispersion through the mixture with the band and share, in
corresponding regions, the effect of level repulsion and gap
formation. Interestingly, the CA1-impurity solver at the low
temperature considered, i.e. β = 15, is able to describe the
formation of the gap in the narrow region of quasiparticle states
near ω = 0, which was to be expected as a consequence of

coherence in the Anderson lattice. This effect is connected with
a strong increase of scattering at ω = 0, see figure 20(c) where
imaginary parts of the ‘local’ self-energies:


̃aσ (z) = z − εa −
( 1

N

∑

k

Gaakσ (z)
)−1

,

(z = h̄ω + iδ, a = c, f ) (35)

are shown. For a proper incorporation of the narrow structure at
ω = 0 a fine numerical resolution is needed and even more so,
since the XNCA/DMFT self-consistency cycle contains critical
subtractions of local and lattice contributions, see, e.g., (27)
and the remarks at the end of section 4.2. Judging the quality of
an impurity solver for the description of the lattice coherence
one has to assert numerical accuracy in this region of small
energies.

Whereas the original gaps become smeared also in the f
spectrum, the coherence gap should become perfect in the limit
T → 0, as is indeed observed with the NRG as an impurity
solver [62]. This leads to the narrow gapped quasiparticle band
structure, to be seen in the k-resolved spectra of figures 21(a)
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Figure 21. The k-resolved excitation spectra of c and f electrons, respectively, for the same parameters as in figure 20 are drawn along the
[111] direction. They demonstrate, like figures 20(a) and (b), the formation of hybridization pseudogaps, smeared by lifetime effects, in the
high-energy region and of a narrow and complete coherence gap at the Fermi energy.

and (b), and to the broad structures, smeared out by the
interactions, at higher excitation energies.

Realistic band structures, in addition to the consequences
of local level hierarchies, attain their structure, such as gaps
and crossings, from the k dependence of matrix elements
like the one-particle hybridization. In the presence of strong
local correlations, however, the quasiparticle bands forming
inside the region of conduction states develop their own
structure, possibly also with gaps, crossings, etc. The
Luttinger theorem, as explained above, links some of the
features seen in a description via independent band particles
with the truly interacting case. Insofar, one can be assured,
that Bragg scattering also opens gaps in quasiparticle bands
in correspondence with, e.g., the effect of hybridization in
conventional band structure theory. A particular nice example
for this correspondence is furnished by the ionic Hubbard
model. A calculation with the NRG as local impurity
solver [61] demonstrates the development of a gap, when
the Brillouin zone is halved by increasing the ionicity of
sublattices. So far, only the NRG was able to calculate such
effects properly. In extensive calculations for realistic systems
the semianalytical impurity solvers constitute an additional
useful tool, since they work reliably in both the high-and low-
energy region.

The k dependence of the hybridization involves a second
interesting aspect. In the versions of the Anderson model (30)
studied here numerically, a local, k-independent hybridization
V was used. Although it was shown in section 4.4 that
hybridizations, e.g. to nearest neighbours, can be formally
treated in the same manner, important differences arise:
excitation spectra calculated with SNCA or ENCA as an
impurity solver [65] already show a substantial suppression
of the many-body correlations derived from the Kondo effect
in the symmetric case with hybridization to nearest-neighbour
sites. The reason seems to be that Vk becomes zero at the
band centre, e.g. near the Fermi level, so that band states
at low energies cannot effectively screen the local moment.
This conclusion is in accord with an investigation of an
Anderson impurity model with a pseudogap density of band
states [66], which vanishes like (ω − μ)r at the chemical
potential with a characteristic exponent r . Suppression of
screening was found for r � 1/2. Since a linearly vanishing
Vk implies a quadratically vanishing effective hybridization
strength πV 2

k ρc(tk) these findings may be relevant here, too,
although the effective medium in the lattice case is determined
from the self-consistency cycle. This again points to the highly
nontrivial circumstances of gap formation in the quasiparticle
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band structure of correlated lattice systems and underlines the
importance of a thorough investigation of the reliability of
impurity solvers in the low-energy regime.

Finally it has to be mentioned that the Fermi-liquid phase
might not be thermodynamically stable for all parameter values
used in our calculations for the Hubbard- and the Anderson-
lattice model. Susceptibilities can point to instabilities towards
other possible ground states [67], which is among a variety of
methods being applied to the investigation of phase diagrams.

5. Conclusion and outlook

The foregoing sections have demonstrated the considerable
progress, which has been made in the development of impurity
solvers via direct perturbation theory and their application
to impurity and lattice problems with strongly correlated
electrons. Our presentation has emphasized a unified view on
several approximations of this kind, which have been proposed
in the past, and on a new one, the CA1, discussed here for the
first time.

All of these approximations can be characterized in a
systematic fashion as skeleton expansions in terms of time-
ordered local perturbational processes along the lines laid
out by [31]. As such, they furnish coupled implicit integral
equations for propagators, which in general have to be solved
numerically; this gives rise to the notion ‘semianalytic’.
ENCA, SUNCA, FNCA and CA1 include different classes of
vertex corrections; the first three of these approximations and
SCNA reduce for U → ∞ to the old NCA. CA1, on the other
hand, contains fully crossing vertex corrections of fourth order
in the hybridization.

It turns out that for the quality of the approximation it is
important to include ladders for repeated particle scattering
and higher-order vertex corrections in a well-balanced way.
This is apparently accomplished best by the CA1, which
however does not iterate special subclasses to infinite order
like SUNCA and, more generally, FNCA. Comparison with
NRG calculations in the spirit of Wilson’s approach reveals that
even CA1 has deficiencies at low temperatures and excitation
energies. At higher energies, however, the situation is reversed:
in an overall view taking into account the complete spectral
region, the semianalytical impurity solvers, with the possible
exception of SNCA, perform quite well, and even the ENCA,
as the least complicated of them, may be used for qualitative
investigations.

The unified view developed here also concerns the
construction of approximations for lattice problems and the use
of the impurity solvers therein. It was shown that appropriate
choices of local building blocks, each containing a set of
internally correlated one-particle states, and a selection of
paths for propagation through the lattice can be consistently
combined in a matrix formulation for a calculation of partition
function and Green functions.

It was explained how in certain simple situations, such
as encountered in the Hubbard model or the Anderson-lattice
model with noninteracting band states, the formalism reduces
to a scalar one and how a locally complete selection of local

processes then leads to the well-known XNCA and DMFT
approximations.

Our starting point was a cumulant expansion for all
local n-particle vertices, which renders the application of the
linked cluster theorem and of unrestricted site summations
possible, thus enabling a convenient k-space representation of
quantities. Generalized dynamical fields have been introduced
and traced back to matrix propagators along closed loops.
The neglect of all cumulant vertices of order n � 2 leaves
as a natural ‘free theory’ the matrix generalization of the
Hubbard-I approximation, which can readily be evaluated in
explicit form. Restricted selection of cumulant vertices to
finite order allows us to define, for example, Hartree-type
approximations [54, 56], which are not yet well investigated
but supposedly are of restricted usefulness for the regime of
low temperatures and excitation energies.

The locally complete approximations, on the other
hand, combine advantages of real space as well as of
k-space formulations with a better treatment of infrared
divergences up to infinite order. Nowadays this can be
implemented by a variety of local impurity solvers, among
which we have concentrated here on the class based on direct
perturbation theory. As applications of the formalism we have
presented local and k-resolved one-particle-excitation spectra
for Hubbard- and Anderson-lattice model and have discussed
characteristic similarities and differences. It has proven useful
to connect this discussion with the foregoing treatment of the
SIAM as the prototypical effective impurity. In particular, the
formation of a Fermi liquid could be illuminated in this way,
emphasizing a local point of view.

We will conclude with a short perspective on possible
future developments on the basis of our local approach
and with some critical remarks about its shortcomings.
Improvements of semianalytical impurity solvers could be
based on CA1 and proceed along directions laid down in the
simpler case of the U = ∞ version of SIAM [41, 44].

Two different approaches could be combined to develop
such a CA2 theory. The fully crossing fourth order vertex
corrections could be reinforced by certain diagrams of sixth
order like in figure 4(b), and possibly iterated further, which
had proven beneficial for spectral properties at large U in the
frame of the PNCA [41]. The CTMA [44, 46], on the other
hand as the second of these theories for U = ∞, stresses the
role of long ladders of crossing particle lines.

A generalization to finite U can be accomplished by
solving the system of four coupled T -matrix equations shown
in figure 22. The resulting T matrices then are to be
inserted into the fully crossing vertex corrections contained in
CA1; they replace parts shown as lowest-order contributions
envisaged in figure 3. The first T matrix of figure 22, for
example, replaces the diagram in figure 4(a), leading to the
sequence of figure 5(b). Both measures together should again
be well balanced in the sense discussed above. Although
we expect further essential quantitative improvements by such
additions to CA1, the resulting CA2-impurity solver still
cannot be expected to be perfect.

It lies at the heart of the infrared problems in SIAM or its
generalizations that no treatment based on a restricted selection
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Figure 22. Higher-order corrections to CA1 can be implemented via
the four T -matrix equations shown graphically. The first of these was
considered in figure 5. The other three equations would generalize
U = ∞-theories like PNCA and CTMA to finite values of U
(CA2-project).

of perturbational processes to infinite order can adequately
describe the complete energy range down to ω = 0. From
a practical point of view, however, for many purposes this
will not really be necessary, for example when other types of
correlations in concentrated systems intervene, e.g. producing
magnetic states. One problem will be left anyway, even in this
case: the numerical expense connected with approximations
like CA1, and even more so with a hypothetical CA2, is
considerable. Certainly there will be a need for improved
algorithms or for the use of parallel computing. At the
end, these higher semianalytical impurity solvers may turn
out impractical compared with e.g. Quantum Monte Carlo or
NRG-methods. Their ability, on the other hand, to describe the
regime at higher temperatures and excitation energies very well
is already shared by the ENCA, which does not need so much
numerical effort.

Impurity solvers in general serve as a key ingredient in
the local approach to lattice systems. Current research aims at
the inclusion of more realistic local building blocks containing
several orbitals or clusters of sites and at a better treatment
of nonlocal correlations. With an optimal selection of a
localized basis of Wannier states screened direct interactions
are hopefully short-ranged and can either be treated within a
small cluster as a local building block or via an extension of
the perturbation in the Hamiltonian to double-transfer between
neighbours, as indicated in section 2.

This, as well as a multi-orbital situation, can in principle
be handled by the matrix-propagator formalism presented in
this paper; it has been demonstrated in section 4 how matrix-
loop propagators systematically serve to define appropriate
dynamical fields acting on effective sites. Long ranged
correlations, however, need an extension of the locally
complete approximation for their proper incorporation.

The cumulant approach outlined above can serve as a basis
for such generalizations. The nonlocal processes additionally
to be taken into account in, for example, self-energies or
susceptibilities connect local cumulants with four external legs
or more on different sites via more than one loop. The
resulting correlations between propagating particles or holes
and between the states of local blocks on different sites may
generate different types of long-range order, e.g. phases of
itinerant or local-moment magnetism.

Technically, the difficulty in setting up such appropriate
nonlocal theories seems to lie in a consistent choice
of diagram classes as skeletons without overcounting, so
that basic requirements are fulfilled, such as conservation
laws and analytic properties like positivity of excitation
spectra. This requires, apart from a strict use of cumulant
subtractions, the consequential implementation of the concept
of irreducibility [21]. Hopefully, work along these lines will
soon lead to improved forms of, for example, band structure
theories for correlated electrons and will shed more light on
the mechanisms behind the formation of exotic ground states
in transition metal compounds.
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no. HHB000.

References

[1] Keiter H and Kimball J C 1971 Int. J. Magn. 1 233
Keiter H and Kimball J C 1971 J. Appl. Phys. 42 1460

[2] Bringer A and Lustfeld H 1977 Z. Phys. B 28 213
Lustfeld H and Bringer A 1978 Solid State Commun. 28 119

[3] Grewe N and Keiter H 1981 Phys. Rev. B 24 4420
[4] Grewe N 1982 Valence Instabilities ed P Wachter and

H Boppart (Amsterdam: North-Holland) p 21
[5] Early review articles are Güntherodt G 1976 Configurations of

4f Electrons in Rare Earth Compounds ‘Festkörperprobleme
XVI/Advances in Solid State Physics’ (Braunschweig:
Vieweg & Sohn) p 95

Wohlleben D 1976 J. Phys. Coll. C4 231
[6] Grewe N and Steglich F 1991 Heavy Fermions, in Handbook

on the Physics and Chemistry of Rare Earths vol 14, ed
K A Gschneidner and L Eyring (Amsterdam: Elsevier)

[7] Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D,
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Vollhardt D 2001 Int. J. Mod. Phys. B 15 2611
Kotliar G and Vollhardt D 2004 Phys. Today 57 53

[29] Grewe N and Pruschke T 1985 Z. Phys. B 60 311
[30] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
[31] Keiter H and Morandi G 1984 Phys. Rep. 109 227
[32] Bickers N E, Cox D L and Wilkins J W 1987 Phys. Rev. B

36 2036
Bickers N E 1987 Rev. Mod. Phys. 59 845

[33] Kondo J 1964 Prog. Theor. Phys. 32 37
[34] Ramakrishnan T V 1981 Valence Fluctuations in Solids

ed L M Falicov and W Hanke (Amsterdam: North-Holland)
p 13

Ramakrishnan T V and Sur K 1982 Phys. Rev. B 26 1798
[35] Keiter H 1982 Z. Phys. B 49 209
[36] Nozières P 1974 J. Low Temp. Phys. 17 31
[37] Pruschke T and Grewe N 1989 Z. Phys. B 74 439
[38] Keiter H 1985 Z. Phys. B 60 337

Keiter H and Qin Q 1990 Z. Phys. B 79 397
[39] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[40] Mühlschlegel B 1968 Z. Phys. 208 94

Coqblin B and Schrieffer J R 1969 Phys. Rev. 185 847
[41] Anders F B and Grewe N 1994 Europhys. Lett. 26 551

Anders F B 1995 J. Phys.: Condens. Matter 7 2801
[42] Grunenberg J and Keiter H 1991 Physica B 171 39

[43] Haule K, Kirchner S, Kroha J and Wölfle P 2001 Phys. Rev. B
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